REVISED COURSE CONTENT

<table>
<thead>
<tr>
<th>New Course Code and Title</th>
<th>MS731M: Chemical Analysis of Materials (2AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Details of Course</td>
<td>Rationale for introducing this course</td>
</tr>
<tr>
<td></td>
<td>This course will cover the subject of chemical analysis of materials. Chemical analysis of materials is wherein the composition and chemical information of various materials and properties are probed and measured. This course will focus specifically on different spectroscopic analytical techniques of chemical analysis of materials. It will cover surface chemical analysis to bulk chemical analysis of materials.</td>
</tr>
<tr>
<td>Aims and objectives</td>
<td>The aim of this course is to cover fundamental principles of some of the spectroscopic chemical analysis of materials techniques, their instrumentation and applications.</td>
</tr>
<tr>
<td></td>
<td>At the end of this course the students will</td>
</tr>
<tr>
<td></td>
<td>- describe the working principles of IR, UV-VIS, XRF and XPS,</td>
</tr>
<tr>
<td></td>
<td>- analyze data acquired from each of the spectroscopic techniques</td>
</tr>
<tr>
<td></td>
<td>- recommend suitable techniques for evaluating material properties with clear justifications, and</td>
</tr>
<tr>
<td></td>
<td>- integrate information from multiple datasets to make deductions about material properties</td>
</tr>
<tr>
<td>Course Syllabus (Refer to below)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Infrared Spectroscopy</td>
</tr>
<tr>
<td></td>
<td>- Ultra violet visible Spectroscopy</td>
</tr>
<tr>
<td></td>
<td>- X-ray Fluorescence Spectroscopy</td>
</tr>
<tr>
<td></td>
<td>- X-ray photoelectron Spectroscopy</td>
</tr>
</tbody>
</table>
Assessment
(Individual and Group Assessment)

| Mode of Assessments and weighting | 4 Tutorials – 40% (Individual)
CA: MCQs + short answer essays -30% (Individual)
Research paper critique: peer review -30% (Individual)
Total – 100% |
|---|---|
| Instructions | CA: 10-20 questions, Open book, Randomised Questions and Options (MCQ) and short answer essays (All content)
Research paper critique: All content |
| Mapping of assessment to course objectives | CA : LO1, LO2, LO3, LO4
Peer review: LO2, LO3 and LO4 |

- **LO1.** Describe the working principles of UV-VIS, IR, XRF and XPS
- **LO2.** Analyse data acquired from each of the analytical techniques
- **LO3.** Recommend suitable techniques for evaluating material properties with clear justifications.
- **LO4.** Integrate information from multiple datasets to make deductions about material properties

Hours of Contact/Academic Units
26 hours / 2 AU

Proposed Date of Offer
AY2020/21 Semester 1

Instructor and Co-instructor (if any)
Dr. Fong Wen Mei Eileen

Class size
30

Mode of Teaching & Learning
(Lectures, regular tests, Q&A, problem-based learning)
Lectures, tutorials, assessments

Any duplication of course
School is advised to coordinate/check with the School offering the course to avoid duplication.

No

Course Syllabus
The following topics will be covered:
1. Introduction to Spectroscopy
Spectroscopy definition, Types of spectroscopy, Data obtained/analysis, uses of spectroscopy in chemical analysis

2: Infra-red Spectroscopy
Molecular vibrations, concept of wavenumber, Group frequencies, finger print vibrations, sample preparation, applications

3: Ultra Violet visible Spectroscopy
Background, absorption spectra, ligand field theory, d-d transitions, Beer-Lambert’s law, quantitative analysis, applications

4: X-ray Fluorescence Spectroscopy
Theory, wavelength and energy dispersive spectrometry (WDS and EDS), Qualitative and Quantitative analysis, Instrumentation, Applications

5: X-ray Photoelectron Spectroscopy
Introduction, Background principle, Photoelectron/Auger peaks, Chemical Shift, Spin orbit splitting, Depth profiling, Data analysis, applications