<table>
<thead>
<tr>
<th>MiniMasters Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title</td>
</tr>
<tr>
<td>Masters Module To Be Mapped Into</td>
</tr>
<tr>
<td>Available as Online</td>
</tr>
<tr>
<td>Contact Hours/ AU</td>
</tr>
<tr>
<td>Details</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Scope/ Syllabus</td>
</tr>
</tbody>
</table>
| | 1. Introduction to colour.
| | - Origins of colour – absorption, emission, photonics.
| | 2. Dyes and pigments
| | - Difference between dyes and pigments.
| | - Synthesis and applications, e.g. bioimaging, of coloured materials.
| | 3. Dye-sensitised solar cells
| | - Mechanism of dye-sensitised solar cells.
| | - Dyes for solar cells.
| | - Perovskite solar cells,
| | 4. Electron donors for solar cells
| | - Bulk-heterojunction solar cells
| | - Polymer donors for high efficiency – design and synthesis.
| | 5. Electron acceptors for solar cells
| | - Fullerenes as acceptors
| | - Non-fullerene acceptors
| | 6. Organic luminescence
- Types of organic emitters – small molecules versus polymers

7. Materials for LEDs
 - Structure-property relationships
 - Super Yellow

8. Frontiers in OLEDs
 - Search for stable blue emitters
 - Phosphorescent materials
 - White emission

MODULE 5: Analysis of Organic Materials

1. Introduction to analysis of organic materials
 - Overview of methods used in analysis of organic materials: SEC
 - Thermal methods, spectroscopy
 - Microscopy
 - X-ray diffraction

2. Size Exclusion Chromatography
 - Uses and limitations of SEC.
 - Alternative methods for determining molar mass of polymers.

3. TGA and DSC
 - Principles and use of TGA and DSC for analysis of organic materials.

4. IR and Raman spectroscopy
 - Vibrational spectroscopy by IR and Raman – principles, uses and limitations.

5. UV-Vis and PL spectroscopy
 - Principles,
 - Uses and limitations of UV and PL spectroscopy.

6. NMR spectroscopy
 - Principles,
 - Uses and limitations of 1H and 13C NMR spectroscopy,
 - Including 2D NMR and solid-state NMR.

7. Microscopy
 - Introduction to optical,
 - Electron and scanning microscopies and their use in analysing organic materials.

 - Introduction to techniques such as CV,
 - Mobility measurements used in electronic characterization of organic materials.

Learning Outcome

At the end of this course the students will
- Obtain an understanding of organic materials and their role in modern technological applications.
- Understand the functional requirements of organic materials for various applications.
- Critically analyze and predict future directions in organic materials.
Assessment

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorial</td>
<td>20%</td>
</tr>
<tr>
<td>CA</td>
<td>60%</td>
</tr>
<tr>
<td>Assignment</td>
<td>20%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Class Size

Min – Max: 10 to 30 students

Continuing Education Training (CET)

Available as CET

Yes
If Yes, please provide the information required below.

Assessment for CET

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorial</td>
<td>20%</td>
</tr>
<tr>
<td>CA</td>
<td>60%</td>
</tr>
<tr>
<td>Assignment</td>
<td>20%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Duration

Note: Please complete this if it is different from the MiniMasters Course

Scope

Note: Please complete this if it is different from the MiniMasters Course